丢番图的墓志铭不知何人所写,可以肯定的是,这位友人必然懂数学。
丢番图的墓志铭是道数学题:问丢番图享年几许?
“噢,老天,沈奇你使用到了Gap准则和梅林变换,从而非常巧妙的解决了四次方程等价于决定序列中所有平方数的问题。”穆勒老夫聊发少年狂,越看沈奇的论文越兴奋。
“这得感谢乔纳斯的美酒。”沈奇帮乔纳斯续了一杯咖啡,略表心意:“酒精使我产生数学灵感,当然了,我并不提倡酗酒,享受到位就行了。是的,我享受那种微微朦胧的感觉。”
“在请你喝酒之前,你已完成了沃什猜想的证明,所以我一点儿功劳都没有,但我依然为你感到高兴和骄傲,我的中国数学家,我的数学系伙计。”乔纳斯谦虚的说到。
“你错了乔纳斯,我说的是上次和上上次,昨夜之前你请我去了两次老虎旅馆,把我灌得酩酊大醉,第一次是尊尼获加,第二次是杰克丹尼。”
“你还记得喝的是什么酒,根本没醉!”
乔纳斯和沈奇有说有笑,穆勒专注的审阅论文,时不时称赞沈奇几句。
唯独玛丽一人孤零零的形影相吊,脸色难看极了。
丢番图方程的历史如此悠久,她简单却又复杂,看上去萌萌的挺单纯,只不过是对整数的研究而已。
然而这位单纯萌萌哒的可人儿呵,如果求解者不懂她的心,她便将你拒之千里之外,冷若冰霜的高傲,不理会你一言一语。
如果你掌握了破解技巧,她便对你从一而终,专一的陪伴一生一世。
沈奇望向窗外,此刻的他非常想念远在东方的女朋友,单纯可爱,外冷内萌,时不时挥动小拳头,她生气的样子最迷人。
欧叶,你还好吗?
这篇丢番图方程的论文,就是为你所著。
为此,我不得不证明一个新的数学定理,让沃什猜想成为沃什定理。
是的,我做到了。
哪怕花费一年多的时间,也值得。
丢番图方程的主要意义,是讨论整系数多项式f=0的有理解或整数解,有时也讨论多个方程构成的方程组的解数问题。
许多著名的丢番图方程以及对它们的研究,丰富和推动了数学的发展。
勾股定理对应的就是一个丢番图方程x^2+y^2=z^2
从数论的角度解释,勾股方程满足gd=的正整数解可由一个参数族给出,它是一条典型的亏格为0的曲线,为近现代中小学数学教材的编写提供了简洁有力的理论支撑。
丢番图方程理论上有无穷多个,最著名的那个应该是费马不加证明的猜测,即当n≥3时,方程x^n+y^n=z^n没有xyz≠0的整数解。
这个猜想如此之难,以至于许多大佬级别的数学家在殚精竭虑三百多年之后,才最终由怀尔斯先生完成证明,于是“费马大猜想”变为“费马大定理”。
怀尔斯对这个丢番图方程的研究直接导致了代数数论的产生,在数学史上留下了浓墨重彩的一笔。
沈奇在高中阶段拿到I金牌时,颁奖人正是安德鲁-怀尔斯教授。
几年过去了,怀尔斯教授依旧在牛津任教。
而沈奇来到了怀尔斯教授曾经战斗过的普林斯顿,曾经办公过的路德大厅。
在这里,沈奇从事着怀尔斯当年从事过的事情,并且看上去已经大功告成。
……
想看好看的小说,请使用微信关注公众号“得牛看书”。
https://xianzhe.cc/book/423/90126_2.html